A TABLE-DRIVEN DATA VALIDATOR

Marc J. Rochkind

Bell Laboratories
Whippany, NJ 07981

Summary

Data validation and editing are performed by most
application systems. This paper describes a table-driven
validator that is intended to be part of an inventory of
off-the-shelf components for application building. It is
particularly advantageous in distributed systems, in
which uniform data validation criteria are both necessary
to have and difficult to obtain.

Introduction

Most computer programs that read data subject it to
validation to check for required data items, proper for-
matting, correct character set, and so on. While in the
case of one-shot or toy programs the validation may be
trivial, more often considerable thought must be given
to the validation strategy. If the data comes directly
from a human, in a transaction-processing or data-entry
application, for example, the validation and the error
messages that result play an important role in the usabil-
ity and learnability of the system. If the data comes
from.a mechanized source, validation must be strict
enough to maintain the quality of the database being
updated, but not so strict as to generate thousands of
extraneous messages.

In a distributed system, responsibility for the reliabil-
ity and correctness of each node may also be distributed.
Each node must not assume that incoming data is valid,
so some validation must be performed each time data is
transferred between nodes. On the other hand, if vali-
dity requirements among the nodes are even slightly at
variance, the system will not run smoothly.

At Bell Laboratories, we have developed a table-
driven validator as a part of a continuing effort to pro-
duce off-the-shelf components that can be used to build
application systems. Some of these components, in
various stages of completion, are a forms (or mask)
package for CRT terminals, a report generation
language, a database management system and a high-
level language for writing transaction-processing pro-
grams. Only the validator will be described here.

While a program that validates its input might have
the validation tests spread among the other processing it
performs, it is necessary for a program that is a candi-
date for using the validator to be organized along func-
tional lines, roughly as follows:

while (moreinput) {
red = getinput();
if (not valid(rcd, msglist))
print msglist;
else
process(red);

)

In this example ‘‘rcd’ is an abstract data type, called
a record, that represents a collection of data items. Con-
ceptually, it is a simple table of field names and values:

NAME Mary Smith
ADDR 123 Main St
SAL

28400

We assume that there is a set of functions that can
be used to manipulate records; at the very least, some-
thing like

change(rcd, NAME, "Jane Doe")
which changes the value of a field, and something like
value(rcd, ADDR)

which retrieves the value of a field.*

v

One could, of course, program the function *‘valid”
conventionally. This may be tedious, but hardly
difficult. The tough part is likely to be determining
what validation should be done, and the validator pro-
vides no help there (except to reduce the cost of being
wrong). The table-driven approach does, however, have
these advantages over the hard-coded approach:

* In some programming languages, one can define abstract data

types and abstract operations directly. In others, such as C [1],
one must provide a library of functions that provide the
necessary information hiding and convenience.

Reprinted from PROCEEDINGS OF COMPCON FALL, September 1980

¢+ 1598-2/80/0000-0712$00.75 © 1980 IEEE

712

o The language used to code the validation table is

: easier to learn and use than a programming
language. The task of coding this table can be—and
has been—assigned to non-programmers.

o The validator can be used in systems where the pur-
chaser of the system is allowed to change the valida-
tions. The system’s vendor might be unwilling to let
the customer change the programs themselves, since
that would make customer support unbearably
difficult.

e As a previously existing, well-used piece of software,
the validator is probably more reliable that the
brand-new programs that comprise the rest of the
application system. This makes the debugging and
testing of the system that much easier. Debugging
and testing the validation table is inherently easy—
the worst 'that can go wrong is incorrect validation,
and, if the wvalidation is incorrect, one knows
immediately where to look.

e The validation table serves as a formal specification
of what validations are performed by a system. This
is useful in enforcing standards and in interfacing
one system to another. Such a formal specification is
of considerable help in inplementing distributed sys-
tems, because it makes it easy to ensure that each
node has the same concepts of ‘‘valid”’ and
“invalid.”

In the remainder of this paper we will describe the
validation language used to code the table and give a
brief sketch of the implementation.

Validation Language
Overview

To use the validator, one must first code the valida-
tion conditions using a special-purpose validation
language. The resulting validation table is compiled into
instructions for a software machine. At execution time
when the function ‘‘valid’ is called, the machine exe-
cutes these instructions to generate the (possibly empty)
list of error messages.

The validation table consists of two columns: the
first contains a series of conditions similar to expres-
sions in a programming language; the second column
contains an error code that is generated if the condition
is false. For example:

NAME % "[A—Za—z]{4,25)" badname
ADDR !=" badaddr
SAL > 10000 & SAL < 75000 badsal

The first condition requires the value of the NAME
field to match the pattern within quotes. The pattern
matches if the value consists of between 4 and 25 alpha-
betic characters. If it doesn’t match, the error code
“badname’’ is generated. The second condition just
requires the ADDR field to be present (that is, not
equal to the null string). The third condition requires

the value of the SAL field to be in the range 10000 to
75000 —supposedly, anything else is an unreasonable
salary.

In the case of the last condition, it would be better
to check that SAL is numeric before checking its range.
To do this, one may indent a condition under another
condition:

SAL % "[0-9]{1,6)" badsall
SAL > 10000 & SAL < 75000 badsal2

Now error code ‘‘badsall’ is generated if SAL is not
from 1 to 6 digits. The indented range check is per-
formed only if the first test passes; if SAL is out of
range, error code ‘‘badsal2’’ is generated.

The validator translates the generated error codes to
English messages that can be printed by its caller. It
does this be referring to a table of error codes. For
example:

badname NAME must be 4 to 25 alpha characters.
badaddr ADDR is a required field.

badsall SAL must be numeric.

badsal2 SAL is out of range.

About two dozen operators and several built-in func-
tions can be used to code conditions. Parentheses may
be used to any depth. Conditions may be indented to a
depth of 9 (more than enough). There may be hun-
dreds of conditions, up to the limit of memory to hold
the compiled instructions for the machine.

The next few sectioas describe the language used to
code the conditions in more detail.

Operands

Operands may be field names, numbers, strings, reg-
ular expressions and function calls.

Field names may be whatever is legal for the record
data type. The validation compiler accesses a table of
allowable field names and translates the names to an
internal code that is used by the record manipulation
functions.

Numbers must be integers, in the range —999999999
through 999999999.

Strings are quoted and may contain any ASCII char-
acter except NUL.

Regular expressions are patterns using a notation
taken from the UNIX* [2, 4] text editor. They will not
be described here, but the examples indicate the facili-
ties available. More details may be found in [5].

Functions are used for operations not handled by the
operators. Some examples are:

* UNIX is a Trademark of Bell Laboratories.

713

substr Obtain a substring.

size Get the size of a string.

dump Print the record being validated.

search A simple facility for searching tables (such as a
table of state names).

chg Change the value of a field. This function
makes the validator an editor as well. It can be
used to supply defaults, translate symbols to
numeric codes, combine fields, break down
fields, etc.

Operators

Operators exist to do comparison, arithmetic, pattern
matching, logical combination and concatenation.

The comparison operators are divided into those for
numeric comparison and those for lexical comparison.
The former operators treat their operands as numbers;
the latter ones treat their operands as strings. The
numeric ones are:

== f#l=

The first two are for equal and not equal; the rest are
self-explanatory. The corresponding lexical operators
are:

== l= §< §<«=

< <= > >=

$> $>=

This approach to comparison operators is admittedly
ugly, but the more streamlined alternatives seemed too
full of surprises (is ‘2’ equal to <“02*’?).

The arithmetic operators are the usual ones:
+ - * /7

The matching operators are ““%’” and ‘““%%’’. The
first is used to match a pattern against an entire string;
the second treats the string as a sequence of blank-
separated words, and requires the pattern to match each
word. It is useful in cases where one requires a field to
be capitalized words, for example:

NAME %% "[A-Z]la—z]*"

Pattern matching is probably the most valuable feature
of the validator, since it exists in none of the program-
ming languages commonly used for application program-
ming (PL/I, COBOL, etc.).

The logical operators are ‘| (or), “&” (and) and
“” (not).

Finally, the only string operator is **$” for concatena-
tion.

badname

714

Implementation

The validation compiler was built with the compiler-
building tool yacc [3]. It reads the validation table from
a UNIX file and generates the instructions for the
software machine on another file. To illustrate. the line

SAL > 10000 & SAL < 75000 badsal

would generate these instructions:

FIELD SAL
PUSHN =10000
GT

FIELD SAL
PUSHN =75000
LT

AND

ERR "badsal"

The validation machine is a software stack-machine that
reads the instructions into memory at execution time
and executes them each time it receives a record The
instruction FIELD pushes the value of its operand field
onto the stack. The instruction ERR tests the top of the
stack; if it is zero, it generates the error code given as
its operand. The other instructions are self-explanatory.

Both the compiler and the machine were developed
originally on UNIX, and it would be difficult to move
the compiler to another operating system, since it makes
liberal use of system calls rarely found on other sys-
tems. The machine, however, is mostly a giant ‘‘case”
statement that could easily be ported to another
environment that has a C compiler, or even rewritten,
in PL/I, say. If this were done, one could use UNIX to
compile the table, and move the compiler output te the
system on which the application runs.

Experience

The validator was developed in 1976 for a system
that produced telephone books. Since then, it has been
used in a system that automates telephone repair
bureaus, and in several data-entry applications. The fact
that it has no built-in field names that tie it to a particu-
lar application and the power of its expressions make it
quite universal. Its use has encouraged application sys-
tem designers to-do more validation and to provide
more specific messages than they would otherwise. For
example, the telephone repair bureau system had one
primary online error message: ‘‘FIELD IN ERROR.
With the validator, it now can generate dozens of
different messages, providing the repair service atten-
dant with more guidance. The editing features (the chg
function) have also simplified the transaction-processing
programs somewhat.

(1]

[2]

(3]

[4]

(5]

References

B. W. Kernighan and D. M. Ritchie, The C Pro-
gramming Language, Englewood Cliffs, N. J.:
Prentice-Hall, 1978.

D. M. Ritchie and K. Thompson, “The UNIX
Time-Sharing System’, CACM, 17, 7 (July
1974), 365-75.

S. C. Johnson, “Yacc — Yet Another Compiler-
Compiler”’, Comp. Sci. Tech. Rep. No. 32, Bell
Laboratories (July 1975).

The Bell System Technical Journal, 57, 6, Part 2
(July-August 1978), 1897-2312.

B. W. Kernighan and P. J. Plauger, Software
Tools, Reading, Mass.: Addison-Wesley, 1976.

715

